Excess Thermodynamic Functions for Ternary Systems. 9. Total-Pressure Data and G^E for Water/Ethylene Glycol/Ethanol at 50 °C

Carlos Gonzalez and Hendrick C. Van Ness*

Chemical and Environmental Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12181

Isothermal P-x data for the ternary system water/ethylene glycol/ethanol at 50 °C are reported, together with data for the constituent binaries. Data reduction by Barker's method provides a correlation for G^{E} .

Reported here are vapor/liquid equilibrium (VLE) measurements for the water (1)/ethylene glycol (2)/ethanol (3) system at 50 °C. Experimental values of total vapor pressure are given over the full composition range of the three constituent binaries and for five runs with ternary mixtures formed by addition of a pure species to mixtures of the other two. The apparatus is that of Gibbs and Van Ness (1) as modified by DiElsi et al. (2).

Table I. P-x Data for Water (1)/Ethylene Glycol (2) at 50 °C

<i>x</i> ₁	<i>x</i> ₂	P, kPa	<i>x</i> ₁	<i>x</i> 2	P, kPa
0.0185	0.9815	0.316	0.5494	0.4506	6.589
0.0479	0.9521	0.634	0.5994	0.4006	7.224
0.0991	0.9009	1.185	0.6494	0.3506	7.858
0.1500	0.8500	1.753	0.6995	0.3005	8.494
0.1990	0.8010	2.315	0.7498	0.2502	9.156
0.3006	0.6994	3.524	0.8000	0.2000	9.798
0.3506	0.6494	4.157	0.8501	0.1499	10.440
0.4009	0.5991	4.758	0.8999	0.1001	11.094
0.4506	0.5494	5.411	0.9502	0.0498	11.745
0.5006	0.4994	6.023	0.9803	0.0197	12.082
0.5020	0.4980	5.978			

Table II. P-x Data for Water (1)/Ethanol (3) at 50 °C

 x_1	<i>x</i> ₃	P, kPa	x_1	x_{3}	P, kPa	
 0.0499	0.9501	29.523	0.5006	0.4994	27.521	
0.1004	0.8996	29.516	0.5508	0.4492	27.113	
0.1500	0.8500	29.447	0.6007	0.3993	26.665	
0.2002	0.7998	29.314	0.6513	0.3487	26.182	
0.2508	0.7492	29.120	0.7004	0.2996	25.680	
0.3003	0.6997	28.878	0.7507	0.2493	25.010	
0.3503	0.6497	28.589	0.8006	0.1994	24.185	
0.4010	0.5990	28.241	0.8508	0.1492	22.993	
0.4507	0.5493	27.909	0.8720	0.1280	22.274	
0.5004	0.4996	27.540	0.9488	0.0512	17.821	

Table III. P-x Data for Ethylene Glycol (2)/ Ethanol (3) at 50 °C

<i>x</i> ₂	x ₃	P, kPa	<i>x</i> ₂	x ₃	P, kPa
0.0203	0.9797	28.900	0.5004	0.4996	17.861
0.0504	0.9496	28.090	0.5495	0.4505	16.707
0.1093	0.8907	26.567	0.5994	0.4006	15.454
0.1492	0.8508	25.625	0.6494	0.3506	14.115
0.1982	0.8018	24.502	0.7002	0.2998	12.665
0.2474	0.7526	23.418	0.7501	0.2499	11.137
0.2974	0.7026	22.337	0.8003	0.1997	9.412
0.3470	0.6530	21.278	0.8464	0.1536	7.613
0.3968	0.6032	20.210	0.8995	0.1005	5.308
0.4465	0.5535	19.128	0.9420	0.0580	3.277
0.4962	0.5038	18.027	0.9790	0.0210	1.333

Table IV. *P-x* Data for Water (1)/Ethylene Glycol (2)/Ethanol (3) at 50 $^{\circ}$ C

),				
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	P, kPa	
0.4926	0.0204	0.4870	26.813	
0.4744	0.0510	0.4746	26.145	
0.4498	0.1006	0.4496	25.048	
0.4244	0.1513	0.4243	23.903	
0.3994	0.2014	0.3992	22.707	
0.3745	0.2512	0.3744	21.574	
0.3493	0.3015	0.3492	20.358	
0.3239	0.3523	0.3238	19.132	
0.2991	0.4019	0.2990	16 697	
0.2742	0.4517	0.2741	15 333	
0.2492	0.5010	0.2492	13 768	
0.0504	0.6264	0.3099	14 01 2	
0.0008	0.5853	0.0000	14 467	
0.1201	0.5462	0.2000	14 895	
0.1000	0.5081	0.2514	15 290	
0.2969	0.4704	0.2327	15.665	
0.3527	0.4331	0.2142	16.024	
0.4068	0.3968	0.1963	16.340	
0.4593	0.3618	0.1790	16.617	
0.5106	0.3274	0.1620	16.851	
0.5605	0.2941	0.1455	17.015	
0.0499	0.3137	0.6364	21.870	
0.1002	0.2971	0.6027	22.155	
0.1504	0.2805	0.5691	22.362	
0.2005	0.2640	0.5355	22.568	
0.2507	0.2474	0.5019	22.739	
0.3003	0.2310	0.4687	22.876	
0.3501	0.2146	0.4353	23.049	
0.4003	0.1980	0.4017	23.076	
0.4502	0.1815	0.3683	23.097	
0.4990	0.1654	0.3356	23.060	
0.6627	0.3266	0.0107	9.144	
0.6517	0.3211	0.0272	10.572	
0.6327	0.3118	0.0555	12.713	
0.0124	0.3018	0.0858	14.010	
0.5915	0.2914	0.1174	17 498	
0.5051	0.2604	0.1851	18 591	
0.5212	0.2568	0 2220	19.621	
0.4950	0.2439	0.2611	20.551	
0.4547	0.2241	0.3212	21.748	
0.4378	0.2157	0.3464	22.188	
0.3250	0.6595	0.0155	4.879	
0.3173	0.6438	0.0389	6.407	
0.3042	0.6172	0.0786	8.692	
0.2909	0.5904	0.1187	10.645	
0.2773	0.5627	0.1600	12.360	
0.2633	0.5344	0.2023	13.890	
0.2488	0.5050	0.2462	15.264	
0.2341	0.4750	0.2909	16.507	
0.2188	0.4440	0.3372	17.055	
0.2033	0.4125	0.3842	18.038	
0.1873	0.3800	0.4328	19.773	

Reagent-quality ethanol with an indicated purity of 99.9 mol % was supplied by U.S. Industrial Chemicals. The ethylene glycol was a chromatoquality reagent with a purity >99.5 mol % from Matheson Coleman and Bell. The water was doubly deionzed. All reagents were thoroughly degassed.

	water (1)/ ethylene glycol (2)	water (1)/ ethanol (3)	ethylene glycol (2)/ ethanol (3)
$P_i^{\rm sat}$, kPa	12.345	12.345	0.116
P_i^{sat} , kPa	0.116	29.476	29.476
$V_{i}^{\rm L}$, cm ³ /mol	18	18	57
$V_i^{\rm L}$, cm ³ /mol	57	60	60
B_{ii} , cm ³ /mol	-1137	-1137	-1970
B_{ii} , cm ³ /mol	-1970	-1400	-1400
$B_{ii}^{\prime\prime}$, cm ³ /mol	-1246	-1168	-1729
A_{ii}	-0.14939	0.93116	0.83640
A_{ii}	-0.14939	1.59918	0.70498
λ _{ii}		0.32660	0.20563
λ_{ji}		-0.32480	0.05615
n_{ij}		0.54830	
η_{ji}		-1.87888	
rms δP, kPa	0.025	0.012	0.019
max ΙδΡί, kPa	0.048	0.024	0.048

^a Pairs of species are listed in the order i, j.

Figure 1. Lines of constant G^{E} (J/mol) for the water (1)/ethylene glycol (2)/ethanol (3) system at 50 °C.

Results and Correlations

Tables I–III give experimental values of total pressure for the three constituent binary systems, and Table IV presents the data for ternary mixtures. Data reduction is by Barker's method, as described earlier (3, 4). For the binary systems, the Margules equation with up to six parameters provides suitable expression of G^{E} .

$$g_{ij} \equiv G^{\mathsf{E}}_{ij}/RT = [A_{ij}x_i + A_{ij}x_j - (\lambda_{ij}x_i + \lambda_{ij}x_j)x_ix_j + (\eta_{ij}x_i + \eta_{ij}x_j)(x_ix_j)^2]x_ix_j \quad (1$$

For the water (1)/ethanol (3) system, correlation requires all six parameters; for ethylene glycol (2)/ethanol (3), $\eta_{23} = \eta_{32} = 0$; and for water (1)/ethylene glycol (2), $\eta_{12} = \eta_{21} = \lambda_{12} = \lambda_{21} = 0$ and $A_{12} = A_{21}$.

Data for the ternary system are adequately correlated by the three-parameter Wohl equation:

$$g_{123} = g_{12} + g_{13} + g_{23} + (C_0 + C_1 x_1 + C_2 x_2) x_1 x_2 x_3$$
(2)

Correlations for the g_{ij} are given by eq 1; parameters C_0 , C_1 , and C_2 result from regression of just the ternary data.

Second virial coefficients B_{ij} required for estimation of vapor-phase nonidealities come from the correlation of Hayden and O'Connell (5).

Figure 2. Pictorial view of the G^{E} -x surface for the water (1)/ethylene glycol (2)/ethanol (3) system at 50 °C.

Figure 3. Lines of constant P (kPa) for the water (1)/ethylene glycol (2)/ethanol (3) system at 50 °C.

Results of correlation for the binary systems, together with all ancillary information, are summarized in Table V. With parameters for the binary systems fixed at the values of Table V, the ternary-mixture data are correlated when the parameters of eq 2 have the following values: $C_0 = 1.1616$; $C_1 = 0.6820$; $C_2 = 0.5229$. The root-mean-square (rms) value of δP for the ternary data is 0.081 kPa; the maximum value of $|\delta P|$ is 0.235 kPa.

Discussion

No data comparable with ours for the water/ethylene glycol and ethylene glycol/ethanol binary systems or for the ternary system appear in the literature. The data of Pemberton and Mash (δ) for water/ethanol at 50 °C are in almost perfect agreement with ours.

The results of this study are shown in Figures 1–3. Figure 1 is a contour diagram showing lines of constant G^{E} on a triangular mole fraction grid. Figure 2 is an oblique view of the

same surface, and Figure 3 is a contour diagram showing lines of constant P.

The only azeotrope is for the water/ethanol binary system at $x_{+} = 0.0641$ and $P^{az} = 29.537$ kPa.

Giossary

 A_{ij}, A_{ii} parameters in eq 1 second virial coefficient B" Č₀, C₁, parameters in eq 2 C₂ GĔ excess Gibbs function, liquid phase g P G^E/RT total pressure P, sat vapor pressure of pure i R universal gas constant Τ absolute temperature V_i^{L} molar volume of pure liquid / mole fraction, liquid phase X

Greek Letters

 $\lambda_{y}, \lambda_{\mu}, \quad \text{parameters in eq 1} \ \eta_{y}, \ \eta_{\mu} \ \delta \qquad \text{denotes the difference, call }$

denotes the difference, calculated - experimental

Registry No. Ethylene glycol, 107-21-1; ethanol, 64-17-5.

Literature Cited

- (1) Glbbs, R. E.; Van Ness, H. C. Ind. Eng. Chem. Fundam. 1972, 11,
- 410.
 (2) DiElsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1978, 23, 242.
- (3) Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62.
 (4) Abbott, M. M.; Floess, J. K.; Walsh, G. E.; Van Ness, H. C. AIChE J. 1975, 21, 72.
- (5) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209.
- (6) Pemberton, R. C.; Mash, C. J. J. Chem. Thermodyn. 1978, 10, 867.

Received for review January 17, 1983. Accepted March 18, 1983.

Total-Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Dichloromethane with Pentane, Acetone, Ethyl Acetate, Methanol, and Acetonitrile

Jagjit R. Khurma, Oi Muthu, Sarat Munjal, and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Total-pressure vapor-liquid equilibrium (VLE) data are reported at approximately 298, 348, and 398 K for dichloromethane with pentane, acetone, ethyl acetate, methanol, and acetonitrile. The experimental *PTx* data were reduced to y_i , γ_i , and G^E values by both the Mixon-Gumowski-Carpenter and the Barker methods and the results compared. Six G^E correlations were tested in the Barker data reduction; the five-constant Redlich-Kister equation gave the best results. The Peng-Robinson equation of state was used for all the data reduction calculations.

Introduction

This paper presents total-pressure vapor-liquid equilibrium (VLE) data for five binary systems for dichloromethane with pentane, acetone, ethyl acetate, methanol, and acetonitrile. Data for each binary were measured at approximately 298, 348, and 398 K. The techniques and apparatus used to measure these data have been described previously along with the defining equation for the activity coefficient and the standard states used (1).

Chemicals Used

The sources and the purities of the chemicals used are given in Table I. Activated molecular sieves (either 3A or 4A) were put into the chemical containers as they were received. Just prior to being loaded in the VLE cells, each chemical was poured into a distillation flask and distilled through a Vigreux Table I. Chemicals Used

component	vendor	stated purity, %
ethyl acetate	Burdick and Jackson	99.9
acetone	Burdick and Jackson	99.9+
methanol	Fisher Scientific	99.9
pentane	Burdick and Jackson	99.9
acetonitrile	Burdick and Jackson	99.9+
dichloromethane	Burdick and Jackson	99.9

Table II. Experimental P vs. x_1 , Data for the Pentane (1) + Dichloromethane (2) System

	298.19 К			348.17	٢		398.16	к
	P, KPA			P, KPA			P, KPA	
X 1	EXPTL	SHOOTH	X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH
0.0 0.0331 0.0857 0.1510 0.2213 0.3012 0.4097 0.5011 0.5970	58.35 63.98 69.49 74.24 77.46 79.84 81.74 82.46 82.39	58.36 63.95 69.56 74.18 77.49 79.84 81.74 82.45 82.42	0.0 0.0329 0.0854 0.1506 0.2209 0.3009 0.4095 0.5012 0.5975	308.1 325.8 343.2 358.5 369.6 377.9 384.2 385.4 382.6	308.1 325.8 343.3 358.3 369.7 378.1 384.1 385.2 382.9	0.0 0.0329 0.0853 0.1504 0.2207 0.3007 0.4097 0.5016 0.5987	1030.1 1061.4 1097.1 1131.6 1157.1 1176.0 1187.6 1184.2 1169.3	1030.2 1061.4 1097.4 1130.9 1157.3 1176.6 1187.1 1183.7 1169.8
0.6945 0.7792 0.8185 0.8998 0.9497 1.0000	81.61 79.90 78.73 75.30 72.45 68.41	81.58 79.90 78.73 75.33 72.43 68.41	0.6948 0.7796 0.8189 0.9002 0.9500 1.0000	377.3 368.8 363.4 349.5 338.0 323.9	377.2 368.8 363.5 349.4 338.1 323.9	0.6954 0.7801 0.8194 0.9005 0.9502 1.0000	1147.1 1121.4 1105.9 1066.8 1037.5 1003.3	1147.3 1120.9 1105.9 1067.1 1037.3 1003.3

column (25-mm o.d. and 470 mm long). The first and last portions of each distillate were discarded. The retained portions were caught in amber bottles and back-flushed with dry nitrogen for transfer to the cell-loading operation. The stated purities of the chemicals were confirmed by gas-liquid chromatography. None of the compounds exhibited any degradation during the

VLE measurements. The cell pressures were stable with re-